Modeling of

the Mn₃GaN/ABO₃ (001) Interface

by density functional theory calculations

Bulk Mn₃GaN: Ground state

Computational methods

- VASP+PAW+GGA
- Kpoints: 16×16×16

Calculated Mn magnetic moments ($\mu_{\rm B}$)

	a (Å)	m (µ _B /Mn)
This work	3.866	2.438
Experiment	3.886 [1]	2.68(5) [1]
Previous theory	3.86 [2,3]	2.4 [2], 2.43 [3]

[1] K. Shi et al., Adv. Mater. 28, 3761 (2016) [2] P. Lukashev et al., PRB 78, 184414 (2008) [3] J. Zemen et al., arXiv:1512.03470 (2015)

	m _x	m _y	m _z	m _{Tot}
Mn1	1.724	1.724	0	2.438
	-1.724	0	1.724	2.438
ININZ	0	-1.724	-1.724	2.438

Ground state of bulk GaNMn₃ successfully reproduced

Mn₃GaN/SrTiO₃: Interface stability

 $4GaNMn_3 \cdot NMn_2/4SrTiO_3 \cdot TiO_2 \\ 4GaNMn_3 \cdot NMn_2/4SrTiO_3 \cdot SrO \\ 4GaNMn_3 \cdot GaMn/4SrTiO_3 \cdot TiO_2 \\ 4GaNMn_3 \cdot GaMn/4SrTiO_3 \cdot SrO \\ 4GaNMn_3 \cdot SrO \\ 5GaNMn_3 \cdot$

NMn₂/TiO₂

NMn₂/SrO

GaMn/TiO₂

GaMn/SrO

$$\begin{split} \Delta E_{Mn_2N_TiO_2} &= (E_{supercell} - 4E_{Mn_3GaN} - 4E_{SrTiO_3} - E_{Ti} - 2E_O - E_N - 2E_{Mn})/2, \\ \Delta E_{Mn_2N_SrO} &= (E_{supercell} - 4E_{Mn_3GaN} - 4E_{SrTiO_3} - E_{Sr} - E_O - E_N - 2E_{Mn})/2, \\ \Delta E_{GaMn_TiO_2} &= (E_{supercell} - 4E_{Mn_3GaN} - 4E_{SrTiO_3} - E_{Ti} - 2E_O - E_{Ga} - E_{Mn})/2, \\ \Delta E_{GaMn_SrO} &= (E_{supercell} - 4E_{Mn_3GaN} - 4E_{SrTiO_3} - E_{Sr} - E_O - E_{Ga} - E_{Mn})/2, \end{split}$$

Interface structure	NMn ₂ /TiO ₂	NMn ₂ /SrO	GaMn/TiO ₂	GaMn/SrO
ΔE (eV/interface)	-4.785	-2.295	-2.965	-2.187

- VASP+PAW+GGA
- ➤ E_{cutoff}: 550 eV
- Kpoints: 16×16×1
- ▷ a_{inplane}=a_{SrTiO3}=3.945 Å
- > Γ_{5g} non-collinear magnetism

Mn₃GaN/ATiO₃ (A=Sr,Ba): Interface structure

Interfacial Mn2-O and Mn2-Ti distances along the *z* direction for $GaNMn_3/ATiO_3$ (A=Sr, Ba). P=0 corresponds to $GaNMn_3/SrTiO_3$, while P>0 and P<0 correspond to $GaNMn_3/BaTiO_3$ with polarization pointing toward to and away from the interface, respectively.

	Mn2-O z-distance (Å)	Mn2-Ti z-distance (Å)	Ti-N z-distance (Å)
GaNMn ₃ /SrTiO ₃ (P = 0)	2.087	2.138	2.096
GaNMn ₃ /BaTiO ₃ (P > 0)	2.074	1.983	2.015
GaNMn ₃ /BaTiO ₃ (P < 0)	2.065	2.253	2.173

Mn₃GaN/ATiO₃ (A=Sr,Ba): Magnetsim

The calculated magnetic moments (μ_B) of Mn atoms in GaNMn₃/ATiO₃ (A=Sr, Ba).

	GaNMn ₃ /SrTiO ₃		GaNMn ₃ /BaTiO ₃					
	m_x	m_y	m_z	m _{total}	m_{χ}	m_y	m_z	m_{total}
N42	0.299	-1.927	-2.227	2.960	-0.732	1.575	2.306	2.887
IVINZ	-1.929	0.298	2.225	2.960	1.576	-0.732	-2.306	2.887
Mn1	1.659	1.658	0.001	2.345	-1.746	-1.744	0.002	2.468
N4m2	0.183	-1.753	-1.936	2.618	-0.153	1.788	1.940	2.643
IVINZ	-1.754	0.182	1.935	2.618	1.786	-0.157	-1.942	2.643
Mn1	1.814	1.814	0.001	2.565	-1.839	-1.837	0.002	2.599
N4m2	0.033	-1.854	-1.887	2.646	-0.063	1.832	1.894	2.636
IVITIZ	-1.854	0.033	1.887	2.646	1.830	-0.066	-1.896	2.636
Mn1	1.814	1.814	0.000	2.565	-1.785	-1.784	0.001	2.524
N4m2	0.183	-1.754	-1.936	2.619	-0.181	1.748	1.929	2.609
IVITIZ	-1.753	0.182	1.936	2.618	1.747	-0.184	-1.930	2.610
Mn1	1.659	1.659	0.000	2.346	-1.684	-1.684	0.001	2.382
Mp2	0.300	-1.927	-2.226	2.959	-0.026	2.112	2.137	3.005
IVITIZ	-1.926	0.301	2.227	2.960	2.111	-0.028	-2.138	3.005

Mn₃GaN/LaAlO₃: Interface stability

- VASP+PAW+GGA
- ➢ E_{cutoff}: 550 eV
- Kpoints: 16×16×1
- ➤ a_{inplane}=a_{Mn3GaN}=3.867 Å
- > Γ_{5g} non-collinear magnetism

$$\Delta E_{MnN_interface} = (E_{supercell} - 4E_{Mn_3GaN} - 4E_{LaAlO_3} - E_{Al} - E_N - 2E_O)/2,$$

$$\Delta E_{Mn_2N_interface} = (E_{supercell} - 4E_{Mn_3GaN} - 4E_{LaAlO_3} - E_{Al} - E_N - 2E_O - 2E_{Mn})/2$$

	Mn ₃ GaN/LaAlO ₃ (MnN interface)	Mn ₃ GaN/LaAlO ₃ (Mn ₂ N interface)
ΔE (eV/interface)	-0.058	-2.265

Mn₃GaN: Tests of different interfacial configuration

Intensity (a.u.)

Experiment:

- MnN interfacial monolayer
- GaMn puckered layer

Non-magnetic MnN/BO2 interface doesn't have puckered GaMn layer

- VASP+PAW+GGA
- ➤ E_{cutoff}: 550 eV
- Kpoints: 16×16×1
- Non-magnetism

Mn₃GaN: Tests of different interfacial configuration

MnN/BO interface

MnO₂/TiO interface

Mn₃GaN/LaAlO₃: N rich interfaces

• MnN₂-2 seems to be a reasonable model to reproduce the puckering

• MnN₂-3 show weaker puckering structure

Mn₃GaN/LaAlO₃: N rich interfaces

- VASP+PAW+GGA
- \succ E_{cutoff}: 550 eV
- Kpoints: 16×16×1
- Non-magnetism
- VCA for O deficiency

	Formation energy (eV/interface)
Mn2N-supercell (Mn2N/AlO2)	-5.676
MnN-supercell (MnN/AlO2)	-1.459
MnN2-2-supercell	-1.638
MnN2-3-supercell /2	-1.205

Mn₃GaN/LaAlO₃: O deficiency

- VASP+PAW+GGA
- ➤ E_{cutoff}: 550 eV
- Kpoints: 16×16×1
- Non-magnetism
- VCA for O deficiency

	Mn-O bond length (Å)	Al-N bond length (Å)
MnN/AlO ₂	2.142	1.884
MnN/AlO _{1.95}	2.147	1.876
MnN/AlO _{1.9}	2.153	1.869
MnN/AlO _{1.85}	2.549	1.919
MnN/AlO _{1.8}	2.625	1.928

• Interfacial structure reproduced with MnN/AIO_{2-X} configuration

Mn₃GaN/LaAlO₃: Magnetsim in small cell

Mn₃GaN/LaAlO₃: Magnetsim in large cell

The magnetism at interfacial layer should be AFM